The use of this document is authorized for academic purposes
only. The copyrights reside with respective publishers, and any
unauthorized distribution or replication is strictly prohibited.



I APPLICATIONS AND IMPLEMENTATION
Enhancing Electricity Audits
in Residential Buildings with
Nonintrusive Load
Monitoring

Mario E. Berges, Ethan Goldman, H. Scott Matthews,

and Lucio Soibelman

I
Keywords:
‘ Summary
energy conservation
energy use Nonintrusive load monitoring (NILM) is a technique for de-
green buildings ducing the power consumption and operational schedule of
industrial ecology individual loads in a building from measurements of the overall

information and communication
technology (ICT)
technology assessment

voltage and current feeding it, using information and commu-
nication technologies. In this article, we review the potential of
this technology to enhance residential electricity audits. First,
we review the currently commercially available whole-house
and plug-level technology for residential electricity monitoring
in the context of supporting audits. We then contrast this
with NILM and show the advantages and disadvantages of the
approach by discussing results from a prototype system in-
stalled in an apartment unit. Recommendations for improving
the technology to allow detailed, continuous appliance-level
auditing of residential buildings are provided, along with ideas
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Introduction

There are many opportunities for reducing
electricity consumption in buildings, but iden-
tifying and quantifying them is often perceived
to be too time-consuming or too expensive to
justify, particularly in single-family homes. The
average consumer currently receives a monthly
bill as an indicator of his or her consumption.
However, not only has energy-metering hard-
ware become cheaper and more easily available
in recent years, but the “smart meter” instal-
lations proposed by many utilities may provide
much higher-resolution electricity consumption
data than monthly bills currently do. This cre-
ates an opportunity to provide accurate and
building-specific energy conservation recommen-
dation and verification without costly submeter-
ing hardware or expert assistance. Given that res-
idential buildings account for as much as 37% of
the total electricity use in the United States (En-
ergy Information Administration [EIA] 2008), it
is well worth pursuing.

Which conservation opportunities have the
most impact may seem obvious, but most building
owners don’t have a good sense of how much en-
ergy different appliances and activities consume.
In fact, people consistently overestimate the im-
pact of less energy-consuming appliances and less
effective conservation activities, and underesti-
mate the impact of more energy-consuming ap-
pliances and more effective conservation activi-
ties (Kempton et al. 1985). Research on energy
metering has shown that targeted feedback can
be an effective way to remedy this problem, by
providing specific and timely information (Darby
2006; Parker et al. 2006; Fischer 2008).

Energy audits are one way to obtain accurate
and objective assessments of how to achieve sav-
ings. An energy audit is a process by which a
building is inspected and analyzed by an expe-
rienced technician to determine how energy is
used in it, with the goal of identifying oppor-
tunities for reducing the amount needed to oper-
ate the building while maintaining comfort levels
(Thumann and Younger 2003). These audits, par-
ticularly when focused on electricity, can identify
two different types of conservation opportunities:
equipment upgrades and altering usage patterns.
Assessing the value of either type requires a base-
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line measurement of individual end loads. For
residential audits, and specifically the case of elec-
tricity audits, these measurements may consist of
simply multiplying an appliance’s wattage by its
estimated hours of use per year. The wattage may
be based on a nameplate rating, which can dif-
fer from actual power levels, or by connecting a
portable power meter to the equipment, which
is time consuming and not possible for all ap-
pliances. Estimating the number of hours that a
device is in use can be difficult, particularly for
thermostatically controlled loads like refrigera-
tors and air conditioners. Thus, more granular
feedback on appliance-level electricity consump-
tion is needed to validate the effectiveness of a
proposed opportunity.

There is a clear need, and a good value propo-
sition, for providing building owners, professional
energy auditors, and other interested parties, in-
cluding homeowners, with simpler tools that
would produce more accurate estimates of the
energy consumption of the individual electrical
loads in a building at a reasonable cost.

In this article, we present an overview of the
available hardware tools for supporting residen-
tial energy (electricity) audits, analyzing the ad-
vantages and disadvantages of each type of tech-
nology. We then discuss how nonintrusive load
monitoring (NILM), a technique for identifying
individual loads from the total power consump-
tion of the building, can be used to support and
enhance the audit process. Our goal is not to
provide highly accurate consumption informa-
tion for individual appliances in the home, but
rather to help auditors and building owners pri-
oritize by providing them relevant information.
Results from a prototype NILM system currently
deployed in an occupied residential building in
Pittsburgh, PA, are used to support the claims.
We conclude with a discussion of the advantages
of NILM and the necessary improvements, along
with a description of possible future work.

Electricity Audit Alternatives

While electricity metering systems for com-
mercial and industrial buildings have been avail-
able for many years—partly due to the higher
returns on investment possible by better un-
derstanding the energy use of large pieces of
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I APPLICATIONS AND IMPLEMENTATION

electrical equipment—a number of smaller-scale
residential products have emerged. Residential
electricity sensors are typically promoted as a
means to save energy, for financial and often en-
vironmental reasons. Most are either plug-load
or whole-house meters, with a few exceptions.
Neither option can both accurately measure in-
dividual appliances as well as track the changes
in consumption over time.

We will explore some of the general features of
these meters by grouping them into three types:
whole-house, plug-level, and packaged solutions.
Examples of commercially available meters in
these three categories are shown in table 1. Our
goal is not to provide a comprehensive or ex-
tensive review of the available technologies, but
rather to provide some context for our discussion
about how NILM algorithms can benefit the au-
dit process. For a recent review of electricity use
feedback devices, the reader may refer to work
by the Electric Power Research Institute (EPRI
2009) and by Berges and colleagues (2010).

Whole-House Meters

Whole-house meters are typically installed on
or near the utility meter or in the home’s breaker
panel, before the power is distributed to separate
circuits. A few meters are capable of simply re-
laying the utility meter’s reading after capturing
it either using optical sensors (Blue Line Inno-
vations 2009) or decoding the radio signal by
which the meter is communicating with the util-
ity. More commonly, one or more current trans-
ducers are placed around the main electric feed
lines to measure the electric current. In some me-
ters, the voltage is measured as well, in order to

calculate power more accurately. Metrics such as
the home’s instantaneous power in watts or the
estimated monthly energy use in watt-hours are
typically displayed on a dedicated display unit,
and in some cases a data port allows a connected
computer to log data, transmit readings over the
Internet, or provide a richer graphical interface.

Many studies have shown that whole-house
electricity use feedback interfaces, even if dis-
playing only instantaneous power, can motivate
savings of 5% to 15%. (See Motegi et al. 2003;
Parker et al. 2006; EPRI 2009; Granderson et al.
2009; Darby 2006 for a survey of this field.) How-
ever, the value of such feedback is limited by
its lack of specificity. While the users might no-
tice that the home is using a significantly higher
amount of power at some point, they must test
different appliances to see which one is respon-
sible for the increase, switching each one on
or off and observing the change in the home’s
power level. For all of the appliances in a house,
this protocol can take 2-4 hours (Parker et al.
2006).

Because some large loads, such as hot water
heaters, refrigerators, and ovens, are not able to
be directly switched on and off by the user, it may
be difficult to determine the power draw for those
appliances and thus to give appropriate feedback
if only a real-time whole-house wattage value
is available. Further, because the user is man-
ually noting the correlation between individual
appliances’ use and the resulting change in power
level, they might be more concerned about the
energy use of appliances like toasters and hairdry-
ers, which draw high levels of power for a short
time, than the energy use of refrigerators, which
draw more modest amounts of power but are

Table I Examples of Commercially Available Residential Electricity Meters by Type

Meter type Meter brand/model Meter price
Whole-house 1. The Energy Detective (TED) (Energy Inc. 2009) $200
2. Power Cost Monitor™ (Blue Line Innovations 2009) $109
3. Powerkuff Monitor (Powerkuff LLC 2009) $100
Plug-load meters 4. WattsUp? PRO (Electronic Educational Devices 2009) $236
5. Kill-a-watt (P3 International 2009) $20
Packaged solutions 6. AlertMe (AlertMe.com 2009) $600 + $160/year?

Note: Prices are in U.S. dollars.
2 Assuming 12 appliances are being monitored.
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Figure | Top 12 electricity-consuming appliances in the United States, ordered by their average annual
kilowatt hour (kWh) use (EIA 2001). The bars indicate the percentage of households that have the appliance,
while the light grey shading shows a cumulative graph of the percentage of energy they use in a household.

running for many hours each day and ultimately
use far more energy. As a reference, figure 1 shows
the top energy-consuming devices in a typical
U.S. household (EIA 2001). Finally, even if the
home’s trend is tracked over time, it may be dif-
ficult to determine whether changes are due to
behavior, new equipment, or seasonal variation,
as multiple changes may overlap in time and ei-
ther reinforce one another or cancel one another
out.

Many metering technologies available require
the help of an electrician to install. Using meter-
ing hardware that must be installed in the panel
by a licensed professional adds time, and thus
expense, to the process. It also has an effect on
the return on investment (ROI) of the system. A
subtype of these meters attaches an optical sensor
to the existing utility meter and wirelessly relays
kilowatt-hour (kWh) pulses to an in-home dis-
play. Though the cost is relatively low, it sends
accumulated watt-hours as frequently as every 30
seconds (this value refers to meter number 2 in
table 1). Other user-installable and inexpensive
devices, like meter 3 in table 1, rely on an induc-
tive sensor attached to the outside of the main
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cables between the meter and the circuit breaker
panel. These offer an even lower resolution, al-
lowing for the identification of only large appli-
ances when inspecting the overall power of the
building. But at the same time they offer faster
reporting rates, which could be used to support
NILM algorithms.

If one intends to utilize whole-house data to
understand the behavior of individual loads in
a building, then another limitation of metering
hardware such as these, which only report coarse
real-power readings, is that appliances with a sim-
ilar real-power consumption cannot be distin-
guished from one another. For example, a 50-watt
incandescent light bulb may be confused with a
50-watt motor, or any other 50-watt load, even
though their load dynamics are completely dif-
ferent.! It is therefore necessary to obtain other
metrics, such as reactive power, the shape of start-
up transients, or harmonic power components.
Some appliances may even be distinguished by
a careful analysis of their time sequence (e.g.,
during the morning hours, the operation of the
coffee machine is usually followed by that of the
toaster).
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I APPLICATIONS AND IMPLEMENTATION

Smart Meters (AMR/AMI)

Given the recent surge of activity in smart
grid technology and standards, it bears some dis-
cussion as to how this would benefit consumers’
ability to understand and manage their electric
energy consumption. It is first necessary to clarify
that the term smart meter has been used, tradi-
tionally, to refer to the ability of these devices to
establish communication with the electric utili-
ties and exchange information about the build-
ing’s energy demand, pricing, and so on, as op-
posed to obtaining the relevant information from
building owners. To some extent it means making
the grid—rather than the consumer—smart. The
term does not generally imply providing feedback
to the users or any other direct interaction with
users, despite consumer expectations for the tech-
nology.

Much of the forthcoming investment toward
the smart grid will be focused on infrastructure
in the transmission and distribution systems, and
many homes will be outfitted with advanced me-
tering infrastructure (AMI) equipment, which
facilitates two-way communication between the
meter and the utility. This will save on meter-
reading costs, much as many one-way communi-
cating automated meter reading (AMR) systems
already have. It will also facilitate the implemen-
tation of demand response (DR), an idea that re-
lies on this two-way communication. However,
while AMI systems will allow utilities to send
real-time pricing signals and demand-response re-
quests to homes, they will not necessarily provide
real-time power level readings to consumers or
otherwise help people to understand and reduce
their consumption. On the other hand, the AMI
hardware and variable pricing plans can poten-
tially alter both the available information about
energy use as well as the motivation to alter those
usage patterns, so this trend is well worth fol-
lowing. For a review of the potential benefits of
smart meters and example applications enabled
by the smart grid, the reader may refer to work
by Chuang and colleagues (2008). Similarly, for
information on DR, see the publications by the
Demand Response Research Center (Lawrence
Berkeley National Laboratory 2009). The appli-
cability of such AMI systems to NILM will be
discussed later in more detail.
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Plug-Load Meters

Plug-load meters are designed to measure a
single appliance: the meter is plugged into any
electric outlet, and then one or more appliances
can be plugged into the meter. Almost all have a
display of instantaneous watts, accumulated watt-
hours, and other metrics, and some also transmit
readings via a serial, Ethernet, or wireless con-
nection, or even store historical data for later
retrieval. These meters are a useful tool for com-
piling an energy audit, allowing users to take
power readings for individual appliances, which
they can then multiply by an estimated usage
rate (e.g., hours/day) to estimate cost. It should
be noted that, even when measuring an individ-
ual appliance with dedicated hardware, it may
take up to two days of dedicated sampling before
the typical energy consumption rate can be accu-
rately measured given variations and gaps in the
loads (Cavallo and Mapp 2000).

These snapshot measurements can be used
to inform equipment upgrade decisions, such
as replacing a refrigerator, or coarse behavioral
changes, such as unplugging a television rather
than leaving it on standby. However, the process
of measuring individual appliances—sometimes
over an extended period in order to average the
cyclical behavior, like that of a refrigerator—is
time consuming. Further, capturing trends with
this method, such as the variation in energy use
of the television over longer time periods (e.g.,
weeks or months), is even more difficult.

Packaged Solutions: Smart Homes

Packaged solutions, sometimes referred to as
smart home solutions, typically leverage multi-
ple metering technologies to provide an all-
encompassing solution with a higher price tag.
For example, while wirelessly networked plug-
level electricity meters can be attached to
individual appliances, this strategy is not cost-
effective for most residential applications. Av-
erage household expenditures for electricity in
the United States are less than $100% per month
(EIA 2005). While few plug-load monitoring and
control systems have progressed from prototypes
and hype to purchasable products, systems such as
number 6 in table 1 are priced at the equivalent



of $40 per wireless appliance metering point, plus
$125 for the gateway to connect the in-home
network to the Internet and $160/year for the
required reporting service (AlertMe.com 2009).
Connecting the top 12 appliances that make up
the majority of U.S. residential electricity con-
sumption, presented in figure 1, would cost over
$600 initially, plus the annual fee. If such a system
reduced the $1,130 annual electricity consump-
tion of the average U.S. household (EIA 2001)
by the upper bound (15%) that has been empir-
ically demonstrated to be achieved with whole-
house feedback (Parker et al. 2006; Fischer 2008),
then the savings would barely pay for the annual
service fee. While this example is an order of
magnitude less expensive than the alternatives
of just a few years ago, it still represents a longer
payback period than most consumers are willing
to accept. In order to achieve a simple (nondis-
counted) payback period of 15 or 30 years, for
instance, the corresponding savings would need
to be of 35% or 30%, respectively.

In the future, manufacturers may integrate
wirelessly networked energy meters into every
major appliance, lowering production costs with
efficiencies of scale and eliminating installation
costs. However, while some companies, like Gen-
eral Electric, have recently begun testing appli-
ances with such features, it is unknown if or when
they will appear on the market and whether the
live data will be available to consumers (instead
of just the manufacturer). Further, it will be many
years until all the legacy appliances disappear, and
it may never be cost effective to build wirelessly
networked meters into low-cost or small-load ap-
pliances. In short, there are many possible future
outcomes related to smart homes and appliances,
involving many possible information and com-
munication technologies (ICTs).

Nonintrusive Load Monitoring:
A Supporting Tool for Audits

The currently available technologies for resi-
dential electricity monitoring are either too ex-
pensive for most U.S. households or do not pro-
vide granular enough information to fully support
energy audits. We now focus our attention on a
technique that is less expensive and, if used prop-
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erly, can provide a detailed continuous audit of a
residential building.

NILM provides appliance-level energy me-
tering using only a single whole-house meter
and software running on an embedded device
or a full-fledged computer. The typical method-
ology recognizes changes to the home’s power
level by monitoring the signals on the electri-
cal wires, and then uses signal processing and/or
machine-learning algorithms to identify which
device caused the change by matching against a
library of known signatures from different devices.
While there are still some obstacles to completely
replacing hardware submetering with NILM, it is
effective at detecting the large appliances that
are the subject of residential energy audits. The
cost for this type of solution can only be esti-
mated; based on the marginal hardware costs in
our current test beds and based on an assumption
of some central Web-based software services, it is
conceivable that the price will be similar to that
of the whole-house meters currently available on
the market (approximately $200).

Background

Research on NILM, or nonintrusive appliance
load monitoring system (NIALMS) as it is some-
times called, has been underway for over 20 years,
beginning with George Hart in the 1980s (Hart
1989), who utilized changes in the total real (P)
and reactive (Q) power of a building as signa-
tures for each appliance state transition (Hart
1992). While Hart’s research focused primarily
on residential buildings, and dealt with appli-
ances that were regularly present in American
homes of the late 1980s and early 1990s, a number
of researchers have been refining the techniques
and extending the approach to other contexts
and newer appliances (Shaw et al. 2008; Berges
et al. 2009). It also bears mentioning that there
are a small number of commercially available sys-
tems that implement NILM, mostly marketed for
utilities as a tool for performing load research.
For example, see work by Enetics, Inc. (2009) for
details about one such system, and a report by
EPRI (1997) analyzing the market value of the
technology.

The main objective of NILM is to automat-
ically identify appliance-specific characteristics
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from the aggregate power-metrics of a building
by careful inspection of the overall current and
voltage at the main feed. More recently, some
researchers have also investigated applying the
technique to voltage distortions as measured in
any outlet within the building (Cox et al. 2006),
as well as to the electric and magnetic fields
around the main panel (Robert Cox 2004).

To help illustrate the idea, figure 2 shows the
total real power for a residential building. Even
after a simple visual inspection of the signal, some
appliance state changes can be easily identified.
For example, the television start-up (turn on)
has a characteristic power spike due to the nec-
essary warm-up of its internal components. The
objective of NILM is to automate and refine this
process to accurately identify the appliances and
their consumption.

In general terms, the solution consists of four
basic steps: (1) data acquisition and preprocess-
ing, (2) event detection, (3) feature extraction,
and (4) classification. During the first step, volt-
age and current measurements are obtained and
processed to produce power metrics (e.g., real and
reactive power). Figure 2 shows one such power
metric. Then, steady-state or transient changes in
these preprocessed signals, corresponding to the
operation of individual appliances, are detected.
A set of features is then extracted from the sam-
ples surrounding the detected event in order to
characterize it. Finally, these features (also called
the signature of an appliance state transition) are
presented to a classification or pattern-matching
algorithm that will attempt to assign each an ap-

Tatal Active Power (F)
O Office Light (turn off)
Television (turn on)
¥ Television (turn off)

propriate label, where the labels are all the possi-
ble appliance state transitions.

There are certain basic requirements on which
most NILM implementations rely. For example,
certain loads in a building may have nearly iden-
tical profiles in the real power domain, but may
be distinguished by analyzing the way they af-
fect the total reactive power of the building or
their effect on the harmonics of the power sys-
tem. Thus, NILM algorithms have been shown
to benefit from the measurement of additional
metrics, such as reactive power (Hart 1992) and
power harmonics (Laughman et al. 2003).

Furthermore, in order to accurately detect in-
dividual appliance state changes, it is helpful to
reduce the chances of more than one appliance
state change occurring during a single sampling
period by using higher sampling rates. Since some
transients have distinctive characteristics, such
as large start-up power spikes (e.g., the television
in figure 2), a raw measurement of the power is
preferable to a time-averaged output provided by
some commercial meters. In addition, when the
authors compared a number of commercial me-
ters by measuring the same load with each meter,
it was found that they differed by an unaccept-
able amount and in inconsistent ways (Matthews

et al. 2008).

Training Process Produces an Energy
Audit

One other very relevant requirement for
NILM systems to function properly is a training
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Figure 2 Total real power; in watts, for a residential building during a period of approximately six minutes.
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process through which the characteristic signa-
tures of the different appliances’ state transitions
are learned. The majority of research to date has
favored an offline learning strategy, where the
system is trained before installation or during an
initial postinstallation period. We will focus on a
more interactive and continuous process in which
the user is constantly engaged with the system af-
ter its installation.

A first requirement for training is an enumer-
ation of all the appliances in the home that are
of interest, along with their possible state labels
(e.g., on, off, high, low, etc.). Following this, the
user interacts with the installed system by switch-
ing appliances on/off (changing their state), thus
triggering the event detector. Finally, the system
allows the user to assign one of the possible labels
to the newly extracted signature.

This whole process captures the load profiles
for the different appliances in the building, in-
cluding the power consumption for each of the
different states they can be in. A typical energy
audit would use this information together with
an estimate of the duty cycle for each load as a
starting point for the analysis of the building’s
electricity consumption. As mentioned earlier,
good estimates of the duty cycles are hard to ob-
tain and typically use residential averages, which
may or may not fit the audited building. How-
ever, after an NILM system has been trained, the
duty cycles can be assessed continuously.

Thus, we argue that the training process can
be thought of as a user-driven energy audit that
does not require separately measuring the indi-
vidual consumption of different appliances in the
home. Furthermore, given that the NILM system
will provide continuous monitoring, the effect of
changes in the behavior of the residents, as re-
flected by the operation of the appliances, can
be analyzed and presented back to the user (e.g.,
trends, improvements, etc.).

A Prototype NILM System

To test the feasibility of our ideas, an exper-
imental NILM system was built using general
purpose data acquisition hardware (DAQ) and
slightly modified implementations of the algo-
rithms described in the literature. The goal of
our prototype was not to improve current NILM
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techniques, but rather to assess their effectiveness
in supporting residential energy audits.

After being shown to be successful at dis-
tinguishing between several different appliances
plugged into a single power strip (Berges et al.
2009), the system was installed in a residential
apartment unit in Pittsburgh, PA. Using gen-
eral purpose hardware allowed for the transparent
calculation of metrics—including reactive power
and harmonics—and permitted the rate at which
these metrics are reported to be higher than what
most commercially available meters provide.

Achieving similar results for a whole house to
those reported when the system was installed in
a controlled environment (Berges et al. 2009)
was expected to be more challenging. Several
loads in a home are likely to add significant noise
to the signal (e.g., by continuously varying the
power levels) which obscures smaller transitions,
and some variable loads may also be present. In
addition, with a larger number of appliances—
including those that cycle independently, like the
refrigerator—it is more likely that there could
be overlapping events. However, initial trials
demonstrated that the system was capable of cor-
rectly classifying most of the loads in the build-
ing, with higher accuracy for larger appliances.
Table 2 shows the results obtained after collect-
ing more than 200 signatures from different appli-
ances in this single household. The F-1 measures
during training are the average result of a tenfold
cross-validation process where we reserved 10%
of the signatures for testing and used the rest
for training. The F-1 measure for validation (last
column) was derived after presenting one new
example of each appliance and state transition to
the trained system.

Even though there is ample room to improve
the prototype, we wanted to explore the idea of
utilizing the system to support residential energy
audits. Before we describe our experiments to-
ward such a goal, we first summarize the hard-
ware and software components of the prototype
system.

Data Acquisition

To accurately measure the home’s consump-
tion and distinguish between 120-V and 240-V
loads, the electric current on both legs (A and
B) of the main electric supply were measured
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Table 2 Tenfold Cross-Validation F-Score for Different Appliance State Transitions in a Residential Building

Approx.
State power Training Validation

Appliance transition (watts) F-1 F-1

Fan Medium-high 3 100% 100%
Fan High-medium -3 100% 100%
Fan Low—medium 5 100% 100%
Fan Medium—low -5 100% 100%
Overhead light (kitchen) On—off 10 67% 100%
Stereo (attic) On-—off —10 100% 100%
Stereo (attic) Off-on 10 100% 0%
Desk light (attic) Off-on 15 50% 67%
Desk light (attic) On—off 15 0% 0%
Ceiling light (attic) Off-on 16 0% 0%
Ceiling light (attic) On—off —-16 100% 0%
Overhead light (hallway) Off-on 20 0% 0%
Overhead light (hallway) On—off -20 0% 0%
Electric kettle Off-on 500 0% 0%
Electric kettle On—off —500 100% 100%
Stove (small burner) Off-medium 570 100% 100%
Stove (small burner) Medium—off —570 100% 100%
Stove (large burner) Medium—off —870 67% 67%
Stove (large burner) Off-medium 870 0% 0%
Toaster Off-on 1,500 100% 67%
Toaster On—off —1,500 100% 100%
Heating system Fan—off —2,000 100% 100%
Heating system Off-fan 2,000 100% 100%
Heating system Heating—off —14,000 100% 100%
Heating system Off-heating 14,000 100% 100%

with split-core current transformers as shown in
figure 3. To compute complex power, the volt-
age was also measured after attenuating it with a
voltage transformer to fit the input range of the
DAQ. Both current and voltage were simultane-
ously and continuously sampled at 10 kHz with
a National Instruments PCI-6143 16-Bit DAQ.
A custom LabVIEW program (National Instru-
ments, Austin, TX) was used to drive the sam-
pling operations and to compute complex power
and other metrics for every three full periods of
the signal (assuming 60-Hz signals, with our sam-
pling rate, this corresponds to 500 samples).?

Event Detection

The NILM algorithm created for this research
is focused on the classification of “events,” or
points in the time series of power measurements
that correspond to abrupt changes. These events
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are assumed to be the result of an appliance
changing its state. We also assume that the aggre-
gate power metrics for the building quickly settle
to steady-state levels after each state transition.
This is a reasonable assumption for many, but not
all, of the loads in modern buildings. However, it
allows us to avoid having to implement a multi-
scale edge detector such as the one presented in
work by Leeb and Kirtley (1996).

To detect events, we implemented a varia-
tion of the probabilistic event detector described
in work by Luo and colleagues (2002). The algo-
rithm was implemented using both LabVIEW and
MATLAB scripts (MathWorks, Natick, MA).
The main differences in our version are that (1)
to reduce the number of parameters that need
to be set, instead of assuming fixed values for
the standard deviation, we continuously com-
pute this metric from the samples; and (2) we
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Figure 3 Current transformers (CTs), marked by dashed circles, clamped around the two main feeds of the
apartment building.

implement a voting scheme on top of the output
of the maximization of the detection statistic, al-
lowing each sample to receive, at a maximum,
as many votes as the number of samples in the
detection window.

Appliance Signatures

Once an event is identified, a fixed-size win-
dow of samples surrounding it (from here on re-
ferred to as the “transient”) will be compared with
previously labeled examples in order to classify it.
Several different features can be used to charac-
terize the signature of these transients. Similarly,
there are several different approaches for compar-
ing them. One simple signature to compare would
be the difference in average real power before and
after the event. This typically yields unique signa-
tures for many of the larger appliances in a home
(e.g., the 14 kW of the heating unit in table 2),
but, as we previously discussed, it is likely that two
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or more appliances will have power levels that are
indistinguishably close, and including other met-
rics may be necessary. Other possible features are
slope and offset, first and higher order derivatives,
the whole transient itself, and so forth.

Our prototype system implements the above
reasoning in a series of MATLAB scripts that ex-
tract features from the real and reactive power
transients for legs A and B. To capture the shape
of these transients, we decided to apply linear re-
gression on each of the four power values (P, P,
Qa, Qu) and use the regression coefficients as the
signature. Different basis functions were tested for
the regression: Fourier, polynomial, radial, and so
forth. The best results were obtained with Fourier
basis functions (Berges et al. 2009).

Classification

The crux of the NILM process is a machine-
learning algorithm that takes the signature
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of a newly detected event and automatically
classifies it based on a corpus of known appli-
ance state transitions. Classification accuracy was
compared across a number of different off-the-
shelf machine-learning algorithms (Berges et al.
2009); however, a simple 1-nearest neighbor (1-
NN) algorithm using a Euclidian distance mea-
sure between the signature vectors produced ac-
ceptable results, as presented in table 2.

Training

The classification algorithm in the system
relies on an instance-based learning approach,
where a new unlabeled event is compared with
existing, labeled events using a distance metric.
The algorithm determines which “class” the new
event belongs to based on the set of examples
that are closest to this new one (in this case, a
class is the transition of an appliance from one
state to another).

Typically, to obtain the set of examples that
will compose the training set, a human observer
assigns labels to specific events in a time series of
power values recorded in a building. Other disag-
gregation systems, like the one presented in work
by Farinaccio and Zmeureanu (1999), use tempo-
rary hardware submetering to obtain this ground
truth data. While this last approach provides an
authoritative set of signatures with which to train
the classification algorithm, it is impractical for
most real-world applications because of the ad-
ditional hardware/installation costs required. We
instead chose to train the system by manually la-
beling events captured by the whole-house meter.
This approach can scale to a greater number of
appliances in the house and does not require that
an appliance be on a dedicated circuit or oth-
erwise make special allowances for submetering
equipment.

Experiment

As a proof of concept, and in order to obtain
preliminary data that would help us evaluate the
feasibility of using NILM to support electricity
audits in a residential building, we decided to
focus our attention on one appliance from the
list presented earlier in figure 1: the refrigera-
tor. The NILM prototype system was installed in
an apartment building, and plug-level power me-
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ters were used to accurately track the individual
consumption of this appliance. The experiment
consisted of monitoring this load for a week, us-
ing the two methodologies (NILM and plug-level
meters), and then comparing the estimated en-
ergy consumption as computed by each. The mea-
surements taken by the plug-level meters would
be considered as the “ground truth.”

The NILM system was first trained on the re-
frigerator, by providing it with two start-up and
two turn-off signatures, and then on 17 other
two-state appliances present in the home. Adding
these additional appliances increases the chances
of erroneous classifications, but it also brings the
experiment closer to what would be encountered
in a real-life deployment. The plug-level meters
that were used are part of a custom wireless sensor
network platform (Rowe et al. 2006) developed
at Carnegie Mellon University.

The end goal was to predict the energy con-
sumption of the refrigerator with the NILM sys-
tem. Energy values are obtained from integrating
power over time. Given that our current proto-
type simply provides information on which ap-
pliance state transition took place and when,
some extra steps (discussed in the following sec-
tions) needed to be taken to transform this into
energy values. In contrast, for the plug-level
power meters, the operation was simpler since the
data we obtained from them were already power
values.

Results

We evaluated the data obtained during a pe-
riod of 5.5 days,* calculating energy measure-
ments on both the predictions of the NILM and
the measurements taken by the plug-level me-
ter. Figure 4 illustrates the result of doing this by
showing the actual power consumption as mea-
sured by the plug-level meter, and the prediction
of the NILM system. It can be seen that when the
system detects an off-on transition for the refrig-
erator, it assumes that the appliance will steadily
draw 230 watts of power until an on-off transition
is found.

The resulting difference in energy estimates
for the 5.5 days of the experiment was 14.8%,
with the NILM system underestimating the ac-
tual consumption by 2.29 kWh.> The plug-level
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m..
Figure 4 Power consumption, in 300}
watts, of one cycle of the refrigerator il

as estimated by nonintrusive load
monitoring (NILM; dashed line) and
measured by the plug-level meter
(filled gray area). Note that due to
the time resolution of these
measurements, the turn-on and ]
turn-off events do not appear as step

changes.

meter measured 15.48 kWh, whereas the NILM
algorithms predicted 13.19 kWh. Figure 5 shows

a longer time frame for the power estimates.

Discussion

The results presented above, although limited
to a single appliance, show promise for the fea-
sibility of utilizing NILM for supporting the goal
of residential electricity audits. Even if not for
the energy calculations, estimates of when the
refrigerator cycles take place (when the events
occur) can be helpful. Perhaps the most signifi-
cant source of error for this experiment was the
refrigerator’s defrost cycle. This type of event,
shown at 3:41 A.M. in figure 5, was not identified
during the training process. Thus, the NILM al-
gorithms detected an event when this occurred,

but could not classify it as belonging to the re-
frigerator. The result is that the system believes
that the refrigerator was “on” longer during that
cycle. The algorithm also tries to maintain con-
sistency by enforcing an appliance state model

Ground Trth fm'i’!h{;-meter'-
-=-NILM Estimate

51pm 10:5dpm

104 105
o Time hh:mm]

that prevents two consecutive off-on or on-off
events. This is why the estimates are misaligned
for another two cycles.

The importance of training the system on the
universe of all possible appliance state transitions
in a residence becomes evident after seeing the
effect that an untrained event can have on the
results. While the system began correctly classi-
fying events after only one training example, in
most cases more examples were required in cases
where two devices had similar signatures (e.g.,
two incandescent light bulbs of approximately

the same wattage). Also, the training process re-
quired two people: one to turn appliances on and
off, and a second to label the events on the com-
puter with the interface running. In an early trial,
we were able to record approximately 200 labeled
events per hour and to accumulate several exam-
ples of every appliance in a small house in about
two hours. We have developed a mobile inter-
face to allow one-person training and to facili-
tate ongoing training of appliances that automat-
ically cycle on and off, such as refrigerators. More

[Ground Truth from Plug-meter]|
---KILM Estimate

Figure 5 Power consumption, in 2001 a
watts, of the refrigerator as estimated |
by nonintrusive load monitoring m'f
(NILM; dashed line) and measured by oL 2 u
208am 23%am 310a 41am
Time (hh:mm])

the plug-level meter (filled gray area).
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details on this interface can be found in work by
Berges and colleagues (2009).

To minimize the effort required to install an
NILM system, individual users should not have
to train the system on every appliance in their
home; adding four person-hours of training time
to the hardware costs and installation labor would
likely render the system impractical to all but the
most dedicated users. Ideally, the system would be
able to access a library of known appliances that
it would be able to recognize without additional
training, and only require user intervention for a
small portion of the home’s appliances. However,
this scenario presents a couple of challenges for
which there are not yet ready solutions. For ex-
ample, such a library should be able to (1) handle
generalized representations of appliance types as
opposed to specific appliance instances; and (2)
deal with the differences in power systems (e.g.,
U.S. vs. E.U.), sampling rates, selected features,
and so forth that have a direct effect on the re-
sulting signatures.

The automated classification approach to ap-
pliance disaggregation that has been used here
is based on the assumption that the set of appli-
ances in a given home can be grouped into dis-
tinct clusters in n-dimensional feature space. Us-
ing between two and eight features to distinguish
among the 17 appliances in the subject home
(which generated 44 different transition events
because of the number of the possible states for
each appliance) appears to be a tractable problem.
However, matching an unknown event against a
library containing thousands or tens of thousands
of appliance state transitions could prove much

harder.

Future Work

The first branch of research that follows from
the work presented here is to extend and repeat
the experiments. In other words, it is necessary
to include as many appliances as possible from
the list of 12 presented in figure 1 and perform
similar comparisons to verify that NILM systems
can effectively provide good estimates of the en-
ergy consumption and duty cycles. Additionally,
it would be useful to evaluate the practicality
of this approach by allowing experienced energy
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auditors to interact with a prototype system and
share their opinions.

Admittedly, better signal processing and ma-
chine learning algorithms can be investigated,
and this is part of our ongoing research; however,
we believe that the most important hurdles to be
overcome have to do with allowing these systems
to be easily deployed and used. This primarily
amounts to improving the way the algorithms
are trained (e.g., by reducing the amount of time
needed to train them, implementing an online,
distributed signature library, etc.). It also seeks to
improve the interfaces that the end users need to
deal with in order to obtain the information they
need.
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Notes

1. One watt (W, SI) &~ 3.412 British Thermal Units
(BTU)/hour & 1.341 x 1072 horsepower (HP).

2. All the prices listed in this document are in US
dollars.

3. One hertz (Hz) = one cycle per second.

4. A power outage reduced our experimentation time
from the proposed one week, to 5.5 days.

5. One kilowatt-hour (kWh) ~ 3.6 x 10% joules
(J,SI) A~ 3.412 x 10° British Thermal Units (BTU).

References

AlertMe.com Ltd. 2009. AlertMe—Smart energy and
monitoring solutions. www.alertme.com. Accessed
December 2009.

Berges, M., L. Soibelman, H. S. Matthews, and E. Gold-
man. 2010. Evaluating the electric consumption
of residential buildings: Current practices and fu-
ture prospects. Reston, VA: ASCE (American
Society of Civil Engineers).

Berges, M., E. Goldman, H. S. Matthews, and L.
Soibelman. 2009. Learning systems for electric
consumption of buildings. Reston, VA: ASCE
(American Society of Civil Engineers).



Blue Line Innovations. 2009. The Powercost Monitor.

www.bluelineinnovations.com/powercostmonitor.

php. Accessed December 2009.

Cavallo, J. and J. Mapp. 2000. Monitoring refrigerator
energy usage. Home Energy Magazine 17: 32-36.

Chuang, A., ]J. Hughes, M. McGranghan, and X.
Mamo. 2008. Integrating new and emerging tech-
nologies into the California smart grid infrastructure.
Sacramento, CA: Electric Power Research Insti-
tute.

Cox, R. 2004. A field-based approach to non-intrusive
load monitoring. Boston: Massachusetts Institute
of Technology.

Cox, R, S. Leeb, S. Shaw, and L. Norford. 2006. Tran-
sient event detection for nonintrusive load mon-
itoring and demand side management using volt-
age distortion. Paper presented at Applied Power
Electronics Conference and Exposition, 2006, 19-23
March.

Darby, S. 2006. The effectiveness of feedback on energy
consumption. Oxford, UK: Environmental Change
Institute, University of Oxford.

Electric Power Research Institute. 1997. Low-cost
NIALMS technology: Market issues & product as-
sessment. Palo Alto, CA: Electric Power Research
Institute.

Electric Power Research Institute. 2009. Residential
electricity use feedback: A research synthesis and eco-
nomic framework. Palo Alto, CA: Electric Power
Research Institute.

Electronic Educational Devices. 2009. Watts up?
PRO. www.wattsupmeters.com. Accessed De-
cember 2009.

Energy, Inc. 2009. The Energy Detective. www.
thenergydetective.com.
2009.

Energy Information Administration. 2001. End-use
consumption of electricity by end use and appliance.
Washington, DC: Energy Information Adminis-

Accessed December

tration.

Energy Information Administration. 2005. Residential
energy consumption survey. Washington, DC: En-
ergy Information Administration.

Energy Information Administration. 2008. Annual en-
ergy review. Washington, DC: Energy Information
Administration.

Enetics, Inc. 2009. Enetics advanced metering and
analyzers. www.enetics.com. Accessed December
2009.

Farinaccio, L. and R. Zmeureanu. 1999. Using a pat-
tern recognition approach to disaggregate the to-
tal electricity consumption in a house into the
major end-uses. Energy and Buildings 30: 245-259.

Fischer, C. 2008. Feedback on household electricity

Berges et al., Enhancing Electricity Audits in Residential Buildings with NILM

APPLICATIONS AND IMPLEMENTATION I

consumption: A tool for saving energy? Energy
Efficiency 1: 79-104.

Granderson, J. G. Ghatikar, M. A. Piette, and P. Price.
2009. Preliminary findings from an analysis of build-
ing energy information system technologies. Berkeley,
CA: Lawrence Berkeley National Laboratory.

Hart, G. 1989. Residential energy monitoring and
computerized surveillance via utility power flows.
IEEE Technology and Society Magazine 8: 12-16.

Hart, G. 1992. Nonintrusive appliance load monitor-
ing. Proceedings of the IEEE 80: 1870-1891.

Kempton, W., C. K. Harris, ]. G. Keith, and ]. S. Weihl.
1985. Do consumers know “what works” in energy
conservation? Marriage and Family Review 9: 115—
133.

Laughman, C., K. Lee, R. Cox, S. Shaw, S. Leeb, L.
Norford, and P. Armstrong. 2003. Power signature
analysis. IEEE Power and Energy Magazine 1: 56—
63.

Lawrence Berkeley National Laboratory. 2009. All
publications. Demand Response Research Cen-
ter. drrc.lbl.gov/drrc-pubsall.html. Accessed De-
cember 2009.

Leeb, S. and J. L. Kirtley Jr. 1996. Transient event
detector for use in nonintrusive load monitoring
systems. U.S. Patent 5483153, January 9, 1996.

Luo, D., L. Norford, S. Shaw, and S. Leeb. 2002.
Monitoring HVAC equipment electrical loads
from a centralized location—Methods and field
test results. ASHRAE Transactions 108: 841-
857.

Matthews, H. S., L. Soibelman, M. Berges, and E. Gold-
man. 2008. Automatically disaggregating the to-
tal electrical load in residential buildings: A pro-
file of the required solution. Intelligent Computing
in Engineering (ICEO8) Proceedings 381-389.

Motegi, N., M. A. Piette, S. Kinney, and ]. Dewey.
2003. Case studies of energy information systems
and related technology: Operational practices, costs,
and benefits. Berkeley, CA: Lawrence Berkeley
National Laboratory.

Kill A Watt. 2009.
p3international.com. Accessed December 2009.

Parker, D., D. Hoak, A. Meier, and R. Brown. 2006.
How much energy are we using? Potential of res-

P3 International, WWW.

idential energy demand feedback devices. Paper
presented at Proceedings of the 2006 Summer Study
on Energy Efficiency in Buildings, 13-18 August,
Pacific Grove, CA.

Powerkuff LLC. 2009. Powerkuff Monitor Systems and
Wire Wrap. www.powerkuff.com. Accessed De-
cember 2009.

Rowe, A., R. Mangharam, and R. Rajkumar. 2006.
FireFly: A time synchronized real-time sensor

857



I APPLICATIONS AND IMPLEMENTATION

networking platform. In Wireless ad hoc network-
ing: Personal-area, local-area, and the sensory-area
networks. Boca Raton, FL: CRC Press.

Shaw, S., S. Leeb, L. Norford, and R. Cox. 2008.
Nonintrusive load monitoring and diagnostics in
power systems. IEEE Transactions on Instrumenta-
tion and Measurement 57: 1445-1454.

Thumann, A.and W.]. Younger. 2003. Handbook of en-
ergy audits. Sixth edition. Lilburn, GA: Fairmont
Press.

About the Authors

Mario E. Bergés is an assistant professor in
the Department of Civil and Environmental En-

858 Journal of Industrial Ecology

gineering at Carnegie Mellon University (but was
a PhD student at the same institution when this
was written ). Ethan Goldman was a PhD student
at Carnegie Mellon University in Pittsburgh, PA,
at the time the article was written. He is cur-
rently the Measurement & Verification Special-
ist at Efficiency Vermont, Burlington, VT. H.
Scott Matthews is a professor in the Department
of Civil and Environmental Engineering and re-
search director for the Green Design Institute, at
Carnegie Mellon University. Lucio Soibelman is
a professor at Carnegie Mellon University in the
Department of Civil and Environmental Engi-

neering in Pittsburgh, PA, USA.



