Novel Techniques For ON and OFF states detection of appliances for Power Estimation in Non-Intrusive Load Monitoring

Abstract

Non-Intrusive Load Monitoring (NILM) is a method of extracting appliance-level power consumption information from aggregate circuit-level data with the goal of giving users feedback regarding their energy consumption so they can take control of their consumption habits. In this paper, we present a novel algorithm for classification of on and off states of appliances. We compare the performance of our algorithm in on state detection with a pervious paper that evaluated the same dataset and show that it performs up to 13% better. We also present the results of a case study where we collected data for different modes of a cooktop, microwave and dishwasher and used our algorithms to perform power estimation. The error on ten different setups in the test bed ranges from 1% to 32%. We discuss our results and lay out ideas for future work.